Course Curriculum
| Certification in Machine Learning and Deep Learning | |||
| Module 1: Introduction & study plan | 00:08:00 | ||
| Module 2: Overview of Mechine Learning | 00:02:00 | ||
| Module 3: Types of Mechine Learning | 00:04:00 | ||
| Module 4: continuation of types of machine learning | 00:05:00 | ||
| Module 5: Steps in a typical machine learning workflow | 00:04:00 | ||
| Module 6: Application of Mechine Learning | 00:04:00 | ||
| Module 7: Data types & structure | 00:02:00 | ||
| Module 8: Control Flow & Structure | 00:02:00 | ||
| Module 9: Libraries for Machine Learning | 00:04:00 | ||
| Module 10: Loading & preparing data final | 00:04:00 | ||
| Module 11: Loading and preparing data | 00:02:00 | ||
| Module 12: Tools and Platforms | 00:05:00 | ||
| Module 13: Model Deployment | 00:05:00 | ||
| Module 14: Numpy | 00:04:00 | ||
| Module 15: Indexing and slicing | 00:07:00 | ||
| Module 16: Pundas | 00:05:00 | ||
| Module 17: Indexing and selection | 00:04:00 | ||
| Module 18: Handling missing data | 00:05:00 | ||
| Module 19: Data Cleaning and Preprocessing | 00:05:00 | ||
| Module 20: Handling Duplicates | 00:04:00 | ||
| Module 21: Data Processing | 00:04:00 | ||
| Module 22: Data Splitting | 00:05:00 | ||
| Module 23: Data Transformation | 00:06:00 | ||
| Module 24: Iterative Process | 00:04:00 | ||
| Module 25: Exploratory Data Analysis | 00:04:00 | ||
| Module 26: Visualization Libraries | 00:05:00 | ||
| Module 27: Advanced Visualization Techniques | 00:15:00 | ||
| Module 28: Interactive Visualization | 00:07:00 | ||
| Module 29: Regression | 00:03:00 | ||
| Module 30: Types of Regression | 00:07:00 | ||
| Module 31: Lasso Regration | 00:09:00 | ||
| Module 32: Steps in Regration Analysis | 00:14:00 | ||
| Module 33: Continuation | 00:03:00 | ||
| Module 34: Best Practices | 00:08:00 | ||
| Module 35: Regression Analysis is a Fundamental | 00:03:00 | ||
| Module 36: Classification | 00:04:00 | ||
| Module 37: Types of classification | 00:06:00 | ||
| Module 38: Steps in Classification Analysis | 00:05:00 | ||
| Module 39: Steps in Classification analysis Continuou. | 00:10:00 | ||
| Module 40: Best Practices | 00:07:00 | ||
| Module 41: Classification Analysis | 00:03:00 | ||
| Module 42: Model Evolution and Hyperparameter tuning | 00:05:00 | ||
| Module 43: Evaluation Metrics | 00:04:00 | ||
| Module 44: Continuations of Hyperparameter tuning | 00:08:00 | ||
| Module 45: Best Practices | 00:06:00 | ||
| Module 46: Clustering | 00:04:00 | ||
| Module 47: Types of Clustering Algorithm | 00:06:00 | ||
| Module 48: Continuations Types of Clustering | 00:04:00 | ||
| Module 49: Steps in Clustering Analysis | 00:06:00 | ||
| Module 50: Continuations Steps in Clustering Analysis | 00:05:00 | ||
| Module 51: Evalution of Clustering | 00:08:00 | ||
| Module 52: Application of Clustering | 00:07:00 | ||
| Module 53: Clustering Analysis | 00:03:00 | ||
| Module 54: Dimensionality Reduction | 00:10:00 | ||
| Module 55: Continuation of Dimensionally Reduction | 00:03:00 | ||
| Module 56: Principal Component Analysis (PCA) | 00:07:00 | ||
| Module 57: Distributed Stochastic Neighbor Embedding | 00:03:00 | ||
| Module 58: Application of Dimensionality Reduction | 00:04:00 | ||
| Module 59: Continuation of Application of Dimensionality | 00:06:00 | ||
| Module 60: Introduction to Deep Learning | 00:08:00 | ||
| Module 61: Feedforward Propagation | 00:03:00 | ||
| Module 62: Backpropagation | 00:07:00 | ||
| Module 63: Recurrent Neural Networks (RNN) | 00:07:00 | ||
| Module 64: Training Techniques | 00:05:00 | ||
| Module 65: Model Evaluation | 00:08:00 | ||
| Module 66: Introduction to Tensorflow and Keras | 00:08:00 | ||
| Module 67: Continuation of Introduction to Tensorflow and Keras. | 00:11:00 | ||
| Module 68: Workflow | 00:07:00 | ||
| Module 69: Keras | 00:05:00 | ||
| Module 70: Continuation of Keras | 00:02:00 | ||
| Module 71: Integration | 00:07:00 | ||
| Module 72: Deep learning Techniques | 00:03:00 | ||
| Module 73: Continuation of Deep learning techniques | 00:07:00 | ||
| Module 74: Key Components | 00:05:00 | ||
| Module 75: Training | 00:08:00 | ||
| Module 76: Application | 00:04:00 | ||
| Module 77: Continuation of Application | 00:05:00 | ||
| Module 78: Recurrent Neural Networks | 00:06:00 | ||
| Module 79: Continuation of Recurrent Neural Networks. | 00:03:00 | ||
| Module 80: Training | 00:03:00 | ||
| Module 81: Varients | 00:04:00 | ||
| Module 82: Application | 00:05:00 | ||
| Module 83: RNN | 00:05:00 | ||
| Module 84: Transfer Learning and Fine Tuning | 00:05:00 | ||
| Module 85: Continuation Transfer Learning and Fine Tuning | 00:07:00 | ||
| Module 86: Fine Tuning | 00:05:00 | ||
| Module 87: Continuation Fine Tuning | 00:04:00 | ||
| Module 88: Best Practices | 00:05:00 | ||
| Module 89: Transfer Learning and Fine Tuning are powerful techniques | 00:04:00 | ||
| Module 90: Advance Deep Learning | 00:05:00 | ||
| Module 91: Architecture | 00:07:00 | ||
| Module 92: Training | 00:04:00 | ||
| Module 93: Training Process | 00:04:00 | ||
| Module 94: Application | 00:06:00 | ||
| Module 95: Generative Adversarial Network have | 00:03:00 | ||
| Module 96: Rainforcement Learning | 00:05:00 | ||
| Module 97: Reward Signal and Deep Reinforcement | 00:04:00 | ||
| Module 98: Techniques in Deep Reinforcement Learning | 00:05:00 | ||
| Module 99: Application of Deep Reinforcement | 00:06:00 | ||
| Module 100: Deep Reinforcement Learning has demonstrated | 00:04:00 | ||
| Module 101: Deployment & Model Management | 00:04:00 | ||
| Module 102: Flask for Web APIs | 00:05:00 | ||
| Module 103: Example | 00:08:00 | ||
| Module 104: Dockerization | 00:08:00 | ||
| Module 105: Example Dockerfile | 00:10:00 | ||
| Module 106: Flask and Docker provide a powerful combination | 00:04:00 | ||
| Module 107: Model Management & Monitoring | 00:15:00 | ||
| Module 108: Continuation of Model Management & Mentoring | 00:04:00 | ||
| Module 109: Model Monitoring | 00:08:00 | ||
| Module 110: Continuation of Model Monitoring | 00:06:00 | ||
| Module 111: Tools and Platforms | 00:05:00 | ||
| Module 112: By implementing effecting model management | 00:04:00 | ||
| Module 113: Ethical and Responsible AI | 00:04:00 | ||
| Module 114: Understanding Bias | 00:10:00 | ||
| Module 115: Promotion Fairness | 00:07:00 | ||
| Module 116: Module Ethical Considerations | 00:07:00 | ||
| Module 117: Tools & Resources | 00:06:00 | ||
| Module 118: Privacy and Security in ML | 00:06:00 | ||
| Module 119: Privacy Consideration | 00:07:00 | ||
| Module 120: Security Consideration | 00:10:00 | ||
| Module 121: Continuation of security Consideration | 00:07:00 | ||
| Module 122: Education & Awareness | 00:07:00 | ||
| Module 123: Capstone Project | 00:09:00 | ||
| Module 124: Project Task | 00:04:00 | ||
| Module 125: Evaluation and performance | 00:07:00 | ||
| Module 126: Privacy-Preservin g Deployment | 00:08:00 | ||
| Module 127: Learning Outcome | 00:06:00 | ||
| Module 128: Additional Resources and Practices | 00:04:00 | ||
| Module 129: Assignment | 00:01:00 | ||
Instructors
4 STUDENTS ENROLLED
Food Hygiene
Health & Safety
Safeguarding
First Aid
Business Skills
Personal Development



